skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kowalik, Malgorzata"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Subramaniam, B. Executive Editor (Ed.)
    This research presents pioneering work on transforming a variety of waste plastic into synthetic graphite of high quality and purity. Six recycled plastics in various forms were obtained – including reprocessed polypropylene, high-density polyethylene flakes, shredded polyethylene films, reprocessed polyethylene (all obtained from Pennsylvania Recycling Markets Center), polystyrene foams and polyethylene terephthalate bottles (both sourced from a local recycling bin). The waste plastics were carbonized in sealed tubing reactors. The study shows that this versatile process can be used on a mix of waste plastics in a variety of recycled forms to obtain a uniform graphitic carbon phase, hence addressing the challenges of separation and transportation faced by the plastic recycling industry. The conversion yield to elemental carbon for recycled plastics was improved by up to 250% by using graphene oxide (GO) additives. Five different grades of GO and graphene were used to gain insights into the interaction mechanisms between plastics and GO during pyrolysis. The effect of GO additives on carbonization was analyzed using thermogravimetric analysis / differential scanning calorimetry and ReaxFF-based reactive molecular dynamics simulations. The obtained cokes were graphitized at 2500 ℃ and the graphitic quality of the synthetic graphites was analyzed using X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. The plastic waste-derived synthetic graphites exhibit remarkable graphitic quality with crystallite sizes comparable with a model graphitizable material – anthracene coke. The thin, flake-like morphology and nanostructure featuring well-stacked contiguous lamellae make these graphitic carbons highly promising candidates for energy storage applications. Based on our experiments and atomistic-scale simulations we propose interaction mechanisms between the plastic polymers and the graphenic additives that explain the chemical conversion pathways for GO-assisted waste plastic carbonization and graphitization. 
    more » « less
  2. Abstract Recent advancements in the field of two-dimensional (2D) materials have led to the discovery of a wide range of 2D materials with intriguing properties. Atomistic-scale simulation methods have played a key role in these discoveries. In this review, we provide an overview of the recent progress in ReaxFF force field developments and applications in modeling the following layered and nonlayered 2D materials: graphene, transition metal dichalcogenides, MXenes, hexagonal boron nitrides, groups III-, IV- and V-elemental materials, as well as the mixed dimensional van der Waals heterostructures. We further discuss knowledge gaps and challenges associated with synthesis and characterization of 2D materials. We close this review with an outlook addressing the challenges as well as plans regarding ReaxFF development and possible large-scale simulations, which should be helpful to guide experimental studies in a discovery of new materials and devices. 
    more » « less
  3. null (Ed.)
    Molecular insights into graphene-catalyst surface interactions can provide useful information for the efficient design of copper current collectors with graphitic anode interfaces. As graphene bending can affect the local electron density, it should reflect its local reactivity as well. Using ReaxFF reactive molecular simulations, we have investigated the possible bending of graphene in vacuum and near copper surfaces. We describe the energy cost for graphene bending and the binding energy with hydrogen and copper with two different ReaxFF parameter sets, demonstrating the relevance of using the more recently developed ReaxFF parameter sets for graphene properties. Moreover, the draping angle at copper step edges obtained from our atomistic simulations is in good agreement with the draping angle determined from experimental measurements, thus validating the ReaxFF results. 
    more » « less
  4. Abstract Intercalation forms heterostructures, and over 25 elements and compounds are intercalated into graphene, but the mechanism for this process is not well understood. Here, the de‐intercalation of 2D Ag and Ga metals sandwiched between bilayer graphene and SiC are followed using photoemission electron microscopy (PEEM) and atomistic‐scale reactive molecular dynamics simulations. By PEEM, de‐intercalation “windows” (or defects) are observed in both systems, but the processes follow distinctly different dynamics. Reversible de‐ and re‐intercalation of Ag is observed through a circular defect where the intercalation velocity front is 0.5 nm s−1± 0.2 nm s.−1In contrast, the de‐intercalation of Ga is irreversible with faster kinetics that are influenced by the non‐circular shape of the defect. Molecular dynamics simulations support these pronounced differences and complexities between the two Ag and Ga systems. In the de‐intercalating Ga model, Ga atoms first pile up between graphene layers until ultimately moving to the graphene surface. The simulations, supported by density functional theory, indicate that the Ga atoms exhibit larger binding strength to graphene, which agrees with the faster and irreversible diffusion kinetics observed. Thus, both the thermophysical properties of the metal intercalant and its interaction with defective graphene play a key role in intercalation. 
    more » « less